Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Plant Biol ; 24(1): 386, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724922

RESUMEN

BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.


Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Solanum tuberosum , Fertilizantes/análisis , Fósforo/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Nitrógeno/metabolismo , Pakistán , Suelo/química , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38709411

RESUMEN

Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 µM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.

3.
Chemosphere ; 358: 142203, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697571

RESUMEN

Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.

4.
Biomed Chromatogr ; 38(4): e5831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38291628

RESUMEN

Mycotoxins are toxic mycological products that when consumed, absorbed or inhaled cause sickness or even the death of humans. Therefore, the present study aimed to evaluate the contamination levels of mycotoxins (aflatoxins, AFB1 , AFB2 , AFG1 , AFG2 , and ochratoxin A, OTA) in selected medicinal herbs and shrubs using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). A total of 15 samples of medicinal herbs and shrubs were selected. Among them, four samples were aflatoxin contaminated while two samples were ochratoxin A contaminated. The highest level of aflatoxin was detected in Justicia adhathoda (4,704.94 ppb) through HPLC (153.4 ppb) and through TLC, while the lowest level of aflatoxin was detected in Pegnum harmala (205.1 ppb) through HPLC. Similarly, the highest level of OTA was detected in Dodonia viscosa (0.53 ppb) through HPLC (0.5 ppb) and through TLC, while the lowest level was detected in J. adhathoda (O.11 ppb) through HPLC (0.4 ppb) and through TLC. The OTA concentration was very low, being negligible and below permissible limits. The present study concludes that there is a potential risk for the consumption of herbal decoctions. Therefore, regular monitoring and proper management of mycotoxins, including aflatoxins and OTA, in herbal medicines are needed to ensure the safety of herbal drugs to protect consumers.


Asunto(s)
Aflatoxinas , Micotoxinas , Plantas Medicinales , Humanos , Micotoxinas/análisis , Aflatoxinas/análisis , Cromatografía en Capa Delgada , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Alimentos/análisis
5.
Biomed Chromatogr ; 38(2): e5776, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986016

RESUMEN

Pharmacology experts place a high priority on therapeutic plants because the majority of pharmaceutical firms rely on medicinal plants as raw ingredients. Therefore, the potential bioactive components using gas chromatography-mass spectrometry analysis and antioxidant effects using DPPH free radical scavenging activity of various crude fractions of Xanthium spinosum were assessed. Gas chromatography-mass spectrometry analysis showed the presence of various bioactive compounds including benzenedicarboxylic acid (18.60%), 8-octadecenoic acid (4.86%), 11-octadecenoic acid and 10-octadecenoic acid in the crude methanolic extract, 1,2-benzenedicarboxylic acid, diisooctyl ester (14.42%), 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester (14.42%), 6-octadecenoic acid, methyl ester (7.56%), 8-octadecenoic acid, methyl ester (7.56%), 10-octadecenoic acid, methyl ester (7.56%) and hexadecanoic acid, methyl ester (6.55%) in the n-hexane extract, ethanal, 2-methyl-2-[4-(1-methylethyl)phenyl]-(3.02%), (+)-3-carene, 4-isopropenyl-(3.02%), 7H-indeno[5,6-b] furan-7-one, 4,4a,5,6,7a,8-hexahydro- (3.02%) and 2-[5-(2,2-dimethyl-6-methylene-cyclohexyl)-3-methyl-pent-2-enyl]-[1,4] benzoquinone (2.79%) in the chloroform extract and 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester (33.005%), 1,2-benzenedicarboxylic acid, diisooctyl ester (33.005%) and bis(2-ethylhexyl) phthalate (33.005%) in the ethyl acetate extract. Significant DPPH radical scavenging activity was exhibited by the chloroform fraction (43.37-88.65%) at all doses followed by the crude methanolic extract (36.02-83.75%) at all doses. In conclusion, different crude fractions of X. spinosum can be considered a rich source of pharmacologically active components that can be scoped for isolation and may be subjected to in-depth pharmacological study.


Asunto(s)
Antioxidantes , Xanthium , Antioxidantes/análisis , Cloroformo , Mezclas Complejas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ésteres
6.
J Hazard Mater ; 464: 132903, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979422

RESUMEN

Cadmium (Cd) and antibiotic's tendency to accumulate in edible plant parts and fertile land is a worldwide issue. The combined effect of antibiotics and heavy metals on crops was analyzed, but not mitigation of their toxicity. This study investigated the potential of zinc oxide nanoparticles (ZnO NPs) to alleviate the SDZ and Cd toxicity (alone/combined) to promote spinach growth. Results revealed that the ZnO 200 mg L-1 spray decreased the malondialdehyde (MDA) 14%, hydrogen peroxide (H2O2) 13%, and electrolyte leakage (EL) 7%, and increased the superoxide dismutase (SOD) 8%, peroxidase (POD) 25%, catalase (CAT) 39% and ascorbate peroxidase (APX) 12% in spinach leaves under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1 spray. Likewise, ZnO NPs 200 mg L-1 spray enhanced the zinc (Zn) 97%, iron (Fe) 86%, magnesium (Mg) 35%, manganese (Mn) 8%, and potassium (K) 23% in shoots under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1 spray. Further, ZnO 200 mg L-1 spray reduced Cd uptake in roots by 9% and shoots 15% under combined SDZ+Cd (25 mg Kg-1 +50 mg Kg-1) stress compared to ZnO 100 mg L-1. Overall, ZnO NPs alleviated the SDZ and Cd toxicity and enhanced spinach growth in all treatments.


Asunto(s)
Contaminantes del Suelo , Óxido de Zinc , Zinc/análisis , Cadmio/análisis , Óxido de Zinc/toxicidad , Spinacia oleracea , Sulfadiazina , Peróxido de Hidrógeno/farmacología , Superóxido Dismutasa , Antioxidantes/farmacología , Raíces de Plantas , Contaminantes del Suelo/análisis
7.
Artículo en Inglés | MEDLINE | ID: mdl-37940775

RESUMEN

Plants are subjected to a variety of abiotic stressors, including drought stress, that are fatal to their growth and ability to produce under natural conditions. Therefore, the present study was intended to investigate the drought tolerance potential of faba bean (Vicia faba L.) plants under the co-application of biochar and rhizobacteria, Cellulomonas pakistanensis (National Culture Collection of Pakistan (NCCP)11) and Sphingobacterium pakistanensis (NCCP246). The experiment was initiated by sowing the inoculated seeds with the aforementioned rhizobacterial strains in earthen pots filled with 3 kg of sand-mixed soil and 5% biochar. The morphology of biochar was observed with highly porous nature, along with the detection of various essential elements. The biochemical and physiological data showed that phenolic compounds and osmolytes were adversely affected by the induction of drought stress. However, the application of biochar and rhizobacteria boosted the level of flavonoids on average by 52.03%, total phenols by 50.67%, soluble sugar by 82.85%, proline by 76.81%, glycine betaine by 107.25%, and total protein contents by 89.18% in all co-treatments of biochar and rhizobacteria. In addition, stress indicator compounds, including malondialdehyde (MDA) contents and H2O2, were remarkably alleviated by 54.21% and 47.03%, respectively. Similarly, the amplitude of antioxidant enzymes including catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase was also enhanced by 63.80%, 80.95%, 37.87%, and 58.20%, respectively, in all co-treatments of rhizobacteria and biochar. Conclusively, biochar and rhizobacteria have a magnificent role in enhancing the drought tolerance potential of crop plants by boosting the physio-biochemical traits and enhancing the level of antioxidant enzymes.

8.
Chem Biodivers ; 20(12): e202301273, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37983670

RESUMEN

Majority of different kinds of metabolites having therapeutic characteristics are thought to be stored in medicinal plants. So, the present study was aimed to explore the crude extract of leaves and stem of R. afghanicum for phytochemical screening and various pharmacological activities. Toxicological studies at 100 mg/kg showed 60 % mortality where its safe dose level was 90 mg/kg. Phytochemical screening revealed the presence of alkaloids, glycosides, flavonoids and tannins in both extracts. Bacterial strains were susceptible to (RLEt) and (RLM) crude extracts except Staphylococcus aureus. RSM showed maximum anti-inflammatory activity (20.16 %) followed by RSEt (20.14 %) where lowest activity was displayed by RLEt (18.46 %). Phytotoxic activity showed a substantial dose-dependent phyto-inhibition of Lemna minor. An outstanding cytotoxic potential was displayed with LD50 values of 9.46 and 13.03 µg/ml in both stem extracts. RLEt demonstrated a dose-dependent pain relief at 30, 60 and 90 mg/kg which was 31 %, 40 % and 52 % respectively. A considerable spasmolytic action was observed by the shrinkage of jejunum muscle in albino mice. RLEt at 1000 ppm showed (17 mm) and RLM at 1000 ppm showed (16 mm) zone of inhibition against Aspergillus niger. These findings support and corroborate the traditional applications of R. afghanicum for treating digestive, analgesic and inflammatory ailments.


Asunto(s)
Alcaloides , Rhododendron , Animales , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Pakistán , Fitoquímicos/farmacología
9.
BMC Plant Biol ; 23(1): 576, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978421

RESUMEN

BACKGROUND: Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS: HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION: The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).


Asunto(s)
Antioxidantes , Eucalyptus , Antioxidantes/análisis , Peróxido de Hidrógeno , Ácido Ascórbico , Extractos Vegetales/análisis , Frutas/microbiología
10.
ACS Omega ; 8(37): 33266-33279, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744846

RESUMEN

Climatic changes have a direct negative impact on the growth, development, and productivity of crops. The water potential (ψ) and temperature (T) are important limiting factors that influence the rate of seed germination and growth indices. To examine how the germination of seed responds to changes in water potential and temperature, the hydrotime model and hydrothermal model (HTT) have been employed. The HTT calculates the concept of germination time across temperatures, between Tb-To, with alteration, and between Tb-Tc, in supra-optimal ranges. The seeds of Cucumis melo L. were germinated in the laboratory for a hydro-thermal time experiment. Seeds were sown in Petri dishes containing a double-layered filter paper at different osmotic potentials (0, -0.2, -0.4, -0.6, and -0.8 MPa) by providing PEG 6000 (drought stress enhancer) at different temperatures (15, 20, 25, 30, and 35 °C). The controlled replicate was treated with 10 mL of distilled water and the rest with 10 mL of PEG solution. Results indicated that the seed vigor index (SVI-II) was highest at 15 °C with 0 MPa and lowest at 30 °C with -0.2 MPa. However, the highest activity was shown at 15 °C by catalase (CAT) and guaiacol peroxidase (GPX) at (-0.6 MPa), while the lowest values of CAT and GPX were recorded for control at 35 °C with -0.8 MPa at 35 °C, respectively. Germination energy was positively correlated with germination index (GI), germination percentage (G%), germination rate index, seed vigor index-I (SVI-I), mean moisture content (MMC), and root shoot ratio (RSR) and had a negative correlation with mean germination rate, percent moisture content of shoot and root, CAT, superoxide dismutase, peroxidase ascorbate peroxidase, and GPX. In conclusion, thermal and hydrotime models correctly predicted muskmelon germination time in response to varying water potential and temperature. The agronomic attributes were found to be maximum at 30 °C and minimum at 15 °C.

12.
Sci Rep ; 13(1): 14845, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684294

RESUMEN

The development of an efficient, safe, and environment-friendly technique to terminate tuber dormancy in potatoes (Solanum tuberosum L.) is of great concern due to the immense scope of multiple cropping all over the globe. The breakage of tuber dormancy has been associated with numerous physiological changes, including a decline in the level of starch and an increase in the levels of sugars during storage of freshly harvested seed potatoes, although their consistency across genotypes and various dormancy-breaking techniques have not yet been fully elucidated. The purpose of the present research is to assess the efficacy of four different dormancy-breaking techniques, such as soaking in 90, 60, or 30 mg L-1 solutions of benzyl amino purine (BAP) and 30, 20, or 10 mg L-1 gibberellic acid (GA3) alone and in the combination of optimized concentrations; cold pre-treatment at 6, 4, or 2 °C; electric shock at 80, 60, 40, or 20 Vs; and irradiation at 3.5, 3, 2.5, 2, 1.5, or 1 kGy on the tuber dormancy period and sprout length of six genotypes. Furthermore, the changes that occurred in tuber weight and endogenous starch, sucrose, fructose, and glucose contents in experimental genotypes following the application of these techniques were also examined. Overall, the most effective technique to terminate tuber dormancy and hasten spout growth was the combined application of BAP and GA3, which reduced the length of dormancy by 9.6 days compared to the untreated control, following 6.7 days of electric current, 4.4 days of cold pre-treatment, and finally irradiation (3.3 days). The 60 mg L-1 solution of BAP greatly reduced the dormancy period in all genotypes but did not affect the sprout length at all. The genotypes showed a weak negative correlation (r = - 0.4) (P < 0.05) of endogenous starch contents with dormancy breakage and weight loss or a moderate (r = - 0.5) correlation with sprout length, but a strong positive correlation (r = 0.8) of tuber glucose, fructose, and sucrose contents with dormancy breakage and weight loss. During 3 weeks of storage, sprouting commencement and significant weight loss occurred as tuber dormancy advanced towards breakage due to a reduction in starch and an increase in the sucrose, fructose, and glucose contents of the tubers. These findings could be advantageous for postponing or accelerating seed potato storage as well as investigating related physiological research in the future.


Asunto(s)
Solanum tuberosum , Azúcares , Solanum tuberosum/genética , Glucosa , Muerte , Fructosa , Genotipo , Almidón , Sacarosa
13.
Funct Plant Biol ; 50(11): 870-888, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37598713

RESUMEN

Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.


Asunto(s)
Metaloides , Metales Pesados , Humanos , Zinc/metabolismo , Metaloides/metabolismo , Metales Pesados/toxicidad , Metales Pesados/análisis , Metales Pesados/metabolismo , Plantas/genética , Suelo
14.
Plant Physiol Biochem ; 201: 107914, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37515893

RESUMEN

The present study was conducted to determine the effect of indole acetic acid (IAA) and Citrate Capped Silver Nanoparticles (Cit-AgNPs) on various attributes of maize under induced salinity stress. Seeds of the said variety were collected from Cereal Crop Research Institute (CCRI) Pirsabaq, Nowshera, sterilized and sown in earthen pots filled with 2 kg silt and soil (1:2) in triplicates in the green house of the Botany Department, University of Peshawar. Nanoparticles were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Thermo-gravimetric analysis (TGA) and Differential thermal analysis (DTA). Results of SEM revealed spherical morphology of Cit-AgNPs while EDX showed various elemental composition. TGA showed dominant weight loss up to 300 °C while the DTA showed major exothermic peaks at 420 °C. High Salinity concentration (80 mM) imposed significant detrimental impacts by reducing the agronomic attributes, photosynthetic pigments, osmolytes and antioxidant enzymes, which was remarkably ameliorated by the foliar application of Cit-AgNPs and IAA. Agronomic attributes including leaf, root and shoot fresh and dry weight was improved by 52-74%, 43-69% and 36-79% in individual as well as combined treatments of IAA and NPs. Photosynthetic pigments were amplified by 35-63%, total osmolytes were augmented by 39-68% and antioxidant enzymes including SOD and POD were boosted by 42-57% and 37-62% respectively, in combined as well as individual application. Conclusively, Cit-AgNPs are considered as salt mitigating entities that enhance the tolerance level of crop plants along with IAA, which may be beneficial for the plants growing in saline stressed environment.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Antioxidantes/química , Nanopartículas del Metal/química , Ácido Cítrico , Plata/farmacología , Plata/química , Zea mays , Estrés Salino
15.
Front Plant Sci ; 14: 1172255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229136

RESUMEN

Basmati rice is inherently sensitive to various environmental stresses. Abrupt changes in climatic patterns and freshwater scarcity are escalating the issues associated with premium-quality rice production. However, few screening studies have selected Basmati rice genotypes suitable for drought-prone areas. This study investigated 19 physio-morphological and growth responses of 15 Super Basmati (SB) introgressed recombinants (SBIRs) and their parents (SB and IR554190-04) under drought stress to elucidate drought-tolerance traits and identify promising lines. After two weeks of drought stress, several physiological and growth performance traits significantly varied between the SBIRs (p ≤ 0.05) and were less affected in the SBIRs and the donor (SB and IR554190-04) than SB. The total drought response indices (TDRI) identified three superior lines (SBIR-153-146-13, SBIR-127-105-12, SBIR-62-79-8) and three on par with the donor and drought-tolerant check (SBIR-17-21-3, SBIR-31-43-4, SBIR-103-98-10) in adapting to drought conditions. Another three lines (SBIR-48-56-5, SBIR-52-60-6, SBIR-58-60-7) had moderate drought tolerance, while six lines (SBIR-7-18-1, SBIR-16-21-2, SBIR-76-83-9, SBIR-118-104-11, SBIR-170-258-14, SBIR-175-369-15) had low drought tolerance. Furthermore, the tolerant lines exhibited mechanisms associated with improved shoot biomass maintenance under drought by adjusting resource allocation to roots and shoots. Hence, the identified tolerant lines could be used as potential donors in drought-tolerant rice breeding programs, administered for subsequent varietal development, and studied to identify the genes underlying drought tolerance. Moreover, this study improved our understanding of the physiological basis of drought tolerance in SBIRs.

16.
Front Plant Sci ; 14: 1151722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035084

RESUMEN

Introduction: Melatonin (MLT) is a bioactive molecule involved in the physiological functioning of plants. Reports related to preharvest applications of melatonin on the postharvest performance of cut flowers are not available in the literature. Materials & methods: This study evaluated the effects of different concentrations of exogenous MLT [0 mM (MT0), 0.5 mM (MT1), 0.7 mM (MT2), 1 mM (MT3)] applied preharvest on the physiological characteristics and postharvest performance of cut tuberose, a globally demanded cut flower. Results & discussion: The results revealed that all treatments increased postharvest vase life by up to 4 d. The MT1, MT2, and MT3 treatments increased total soluble proteins (TSP) by 25%, 41%, and 17%, soluble sugars (SS) by 21%, 36%, and 33%, an+d postharvest catalase (CAT) activity by 52%, 66%, and 70%, respectively. Malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased in all preharvest treatments by up to 23% and 56%, respectively. Proline concentration decreased in all treatments, particularly MT3 (38%). These findings suggest that preharvest MLT treatment is a promising strategy for improving the postharvest quality of cut tuberose.

17.
Front Plant Sci ; 13: 1018646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544879

RESUMEN

The interest in sustainable horticulture has recently increased, given anthropogenic climate change. The increasing global population will exacerbate the climate change situation induced by human activities. This will elevate global food demands and the vulnerability of horticultural systems, with severe concerns related to natural resource availability and usage. Sustainable horticulture involves adopting eco-friendly strategies to boost yields while maintaining environmental conservation. Biochar (BC), a carbon-rich material, is widely used in farming to improve soil physical and chemical properties and as an organic substitute for peat in growing media. BC amendments to soil or growing media improve seedling growth, increase photosynthetic pigments, and enhances photosynthesis, thus improving crop productivity. Soil BC incorporation improves abiotic and biotic stress tolerance, which are significant constraints in horticulture. BC application also improves disease control to an acceptable level or enhance plant resistance to pathogens. Moreover, BC amendments in contaminated soil decrease the uptake of potentially hazardous metals, thus minimizing their harmful effects on humans. This review summarizes the most recent knowledge related to BC use in sustainable horticulture. This includes the effect of BC on enhancing horticultural crop production and inducing resistance to major abiotic and biotic stresses. It also discuss major gaps and future directions for exploiting BC technology.

18.
Microsc Res Tech ; 85(12): 3736-3754, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36054560

RESUMEN

The present study was intended to evaluate the pharmacognostic attributes including macroscopy, microscopy, physico-chemical and phytochemical screening of the aerial part of Xanthium spinosum, belonging to family Asteraceae. Morphologically, the leaf was covered with sparsely scattered non-glandular, multicellular hair on adaxial surface, while abaxial surface was reported with dense silvery furs. Leaf showed lamphystomatic nature bearing anomocytic stomata. Various other leaf constant values like vein islets number, vein termination number and palisade cell ratio were also observed and recorded as 4.36 ± 0.5, 3.36 ± 0.5, and 11.82 ± 2.04, respectively. Cross section of the stem showed typical dicot anatomy differentiated into a single epidermal layer followed by few rows of collenchyma cells, thin-walled parenchyma cells followed by closed and collateral vascular bundles having prephloemic sheaths and a central pith. Light and scanning electron microscopy of the powdered drug revealed a variety of tissues and cells fragments having different measurements. Fluorescence analysis of the fine powder treated with different reagents revealed a variety of colors implying as a sign for the presence of various biochemical constituents. Highest and lowest percent extractive value was found in methanol and distilled water which were 29.10% and 9.80%, respectively. Qualitative phytochemical screening revealed the presence of various secondary metabolites like flavonoids, phenols, tannins, glycosides, phytosterols, glycosides, saponins, and coumarins, while quantitative phytochemical screening detected maximum quantity of flavonoids in chloroform followed by methanol and ethyl acetate. The aforementioned studies have been reported first time for the said species, which may be helpful for the standardization of the current taxon.


Asunto(s)
Xanthium , Microscopía Electrónica de Rastreo , Metanol , Glicósidos , Flavonoides , Estándares de Referencia
19.
Front Plant Sci ; 13: 946922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160964

RESUMEN

Salt stress severely limits the productivity of crop plants worldwide and its detrimental effects are aggravated by climate change. Due to a significant world population growth, agriculture has expanded to marginal and salinized regions, which usually render low crop yield. In this context, finding methods and strategies to improve plant tolerance against salt stress is of utmost importance to fulfill food security challenges under the scenario of the ever-increasing human population. Plant priming, at different stages of plant development, such as seed or seedling, has gained significant attention for its marked implication in crop salt-stress management. It is a promising field relying on the applications of specific chemical agents which could effectively improve plant salt-stress tolerance. Currently, a variety of chemicals, both inorganic and organic, which can efficiently promote plant growth and crop yield are available in the market. This review summarizes our current knowledge of the promising roles of diverse molecules/compounds, such as hydrogen sulfide (H2S), molecular hydrogen, nitric oxide (NO), hydrogen peroxide (H2O2), melatonin, chitosan, silicon, ascorbic acid (AsA), tocopherols, and trehalose (Tre) as potential primers that enhance the salinity tolerance of crop plants.

20.
Front Plant Sci ; 13: 975852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119597

RESUMEN

Defensin genes form part of a plant's defense system and are activated when exposed to biotic or abiotic stress. They play a vital role in controlling many signaling pathways involved in various plant defense mechanisms. This research aimed to isolate and characterize novel defensin genes from selected medicinally important plants to explore their signaling mechanisms and defense associated roles for breeding. The DNA of Albizia lebbeck and Moringa oleifera was subjected to PCR amplification using gene-specific primers of defensin genes. Two novel defensin genes were isolated in each species, with sequence lengths of 300 bp in A. lebbeck and 150 bp in M. oleifera. In-silico analysis undertaken to retrieve and align their orthologous sequences revealed 100% similarity of the A. lebbeck gene with the Musa acuminate peroxidase P7-like gene and 85% similarity of the M. oleifera gene with the Manihot esculenta GDP dissociation inhibitor gene. The reliability, stability and physiochemical properties of homology models of these sequences was confirmed through online computational studies. This preliminary study confirmed the presence of novel genes with peroxidase P7 and Rab GDP dissociation inhibitor gene-like activity in A. lebbeck and M. oleifera, respectively, and their potential defense role in plants. Thus, the defensin genes of both species could be used in the synthesis of transgenic self-defensive plants with increased disease resistance and as potential candidates for improved crop production and thraputic formulation in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...